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The Membrane Picture of Hawking Radiation 
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The effect of a black hole on the classical physics of exterior electromagnetic 
fields can be expressed by replacing the black hole by a conducting membrane. 
We show that when we introduce quantum mechanics the currents in this mem- 
brane must also satisfy a quantum Langevin equation and that this, together 
with the nonzero transmission coefficient for the potential barrier around the 
hole in the membrane picture, gives rise to the Hawking radiation. 
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1. I N T R O D U C T I O N  

The treatment of a black hole as a one-way membrane has been shown to 
be of considerable use in providing a physical picture of the properties of 
black holes. This is achieved, at least in part, by the 3 + 1 splitting of space- 
time in the membrane picture which makes possible the use of Newtonian 
concepts. This is analogous to the usual way we use the splitting of the 
electromagnetic field in Maxwell's equations to provide a Newtonian 
framework in flat spacetime. So far, for black holes, although it has 
provided some insight into quantum phenomena, this splitting has proved 
most useful in classical physics. This is somewhat paradoxical, since the 
3 + 1 approach fits naturally into a Hamiltonian context. 

The physical picture we expect to emerge from the membrane treat- 
ment of black hole evaporation is of radiation from a surface at the 
Hawking temperature according to the normal laws of thermal physics. 
Such a picture might be expected to provide a consistent explanation of the 
following: ( i )The emission of radiation from the hole: the often quoted 
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heuristic model of the separation of virtual particle-antiparticle pairs by 
curvature forces, for example, is not viableJ 41 (ii)The absence of radiation 
from a uniformly accelerated conductor in the Minkowski vacuum. We 
shall see below that the membrane which replaces the black hole in the 
3 + 1 picture is endowed with the properties of an electrical conductor. By 
the equivalence principle such a conductor is locally equivalent to one in 
uniform acceleration in the absence of gravity, yet the former must emit 
Hawking radiation. (ii i)Why the horizon is at a nonzero temperature. This 
is probability the hardest requirement to satisfy. Of course, one can appeal 
to quantum field theory to provide this information, but it would be more 
satisfying to translate the result into the membrane physics. 

In addition, one might expect to show that the membrane behaves 
consistently in response to departures from thermal equilibrium (or, equiv- 
alently, that the picture is consistent with fluctuations at equilibrium.) In 
fact, the main point of this paper will be to set out the physical model and 
to demonstrate this last point. We shall also suggest answers to the some 
of the other problems. We shall restrict discussion to external electro- 
magnetic fields so the membrane geometry is fixed. 

2. T H E  M E M B R A N E  AS  A D I S S I P A T I V E  S Y S T E M  

The stretched horizon of a black hole is defined by mapping each 
point of the event horizon back along a past-directed radial null geodesic 
to a sphere the area of which is a prescribed amount e greater than that 
of the horizon itself. The quantity e is assumed small but is otherwise 
undefined; Thorne et alJ s~ assume ~ is proportional to the horizon area 
at the base point of the null ray, whereas Susskind et al. ~7) take ~ constant 
and equal to a Planck length. The latter approach has the advantage 
that the stretched horizon is at a fixed value of the 'tortoise' radial 
coordinate r ,  = ro ,  say; this is the version we shall adopt, although we 
shall not need to specify a value for r o. [We shall use the radial coordinate 
r .  rather than the Schwarzschild coordinate r; the two are related by 
r ,  = r + ( 2 G M / c  2) l n ( c ' - r / 2 G M -  1 ) for a hole of mass M.] 

This stretched horizon is then endowed with properties of a membrane 
that represents the effect of the hole as far as external fields are concerned. 
The hole is therefore replaced by a physical timelike surface. For example, 
for the electromagnetic field the stretched horizon must act as a terminator 
of normal components of electric and magnetic fields. It must therefore be 
capable of acquiring charge and current distributions; i.e., it must act as a 
conductor. The physical requirement that freely falling observers see finite 
fields at the horizon translates to the requirement that the membrane fields 
(i.e., the fields E H, B H as measured by an observer in the stretched horizon) 
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must appear  as ingoing waves. Hence EH = n  A BH, where n is a unit 
(3-vector) normal to the membrane. 

From Ampere's law, 

f BR.dl=4n f jH.dA (1) 

we define a surface current density (per unit length) JH flowing in the 
membrane by taking the membrane to have a thickness 6, so dA = 6n ^ dl. 
Then 

BR = 4 n J H  ^ n (2) 

defines the surface current density JR.  Expressing the boundary  condition 
in terms of JR gives 

JR = (1/4n) EH (3) 

Thus the stretched horizon acts as a membrane with resistivity 1/4n in 
units in which c = 1.19' 21 

If we consider time-dependent fields, we can find also the self-induc- 
tance of the hole. We have from Ampere's law 

13 H = 4nJ  R A n (4)  

We now apply Faraday 's  law to a closed circuit in the q~=const plane 
made up of an arc in the membrane, two radial spokes, and an arc at 
r = const at a large radius. The emf in this circuit is 

# = - f E H d l = l d f  B d A - c t  (5) 

where 0t = ( 1 -  2M/r)t/2 for a hole of  mass M in geometrical units (G = 1, 
c = 1). To relate B to the current flow we imagine conical probes to carry 
a total current I to and from the poles of  the stretched horizon with a 
uniform current density in the horizon. The solution for the fields in this 
case is kn0wnJ -'~ We have 

- 2 I  
B~ - (6) 

~tr sin 0 

Thus # oc / ~  oz L the final coefficient of proportionali ty being the self- 
inductance L. (If the current changes on a time scale At, then the outer arc 
of the circuit must be at a distance less than c zlt in order that the situation 
be steady. This means that what we are really calculating is the inductance 
of the black hole in its environment;  the point is not  the value of  L, but 
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the fact that there is an induction effect associated with a changing surface 
current.) 

The surface current density JH represents the internal degrees of 
freedom of the black hole in its interaction with the external electro- 
magnetic field. We can think of the total current I as a collective degree of 
freedom. In the presence of an external potential, I satisfies a Langevin 
equation: 

L I  + 4 h i =  V (7) 

In classical physics the ground state of the system is V= 0, I = 0 .  In the 
quantum ground state I must contain vacuum fluctuations, so ( I ) =  0 but 
( i 2 )  ~ 0. But since the system is dissipative, such fluctuations would decay 
unless maintained by a fluctuating force, here the potential difference V. 
It is the Joule heating driven by V that is the Hawking radiation (for the 
electromagnetic field) (compare Susskind et al.(l)). 

The Langevin equation (7) is in fact a remarkable result. In a 
microscopic theory the coupling of a (finite) quantum system to a field 
leads to a Langevin equation in which the dissipation rate coefficient is 
related to the coupling: for example, for a harmonic oscillator of unit mass 
with coordinate q in scalar electrodynamics we have (e.g., Raine et al. 161) 

/~ + yt~ + moq = --e~ (8) 

where ?=e~-/2. This then leads to a fluctuation-dissipation theorem: in 
terms of the susceptbility Z(co) = 1/( - m  2 + m o -  imp) this can be expressed 

1 "~ as I m z = i e - o J l z I  2 (e.g., Massar et al.(5)). For a phenomenological 
Langevin equation there is no reason why ? should be such that this rela- 
tion will hold. Yet, for the Langeving equation (7) the resistivity of the hole 
has turned out to be precisely what is required to fulfill a relation of this 
type. (The extra factor of 4n comes--correctly--from the three-dimen- 
sionality.) This suggests that (7) is not merely a phenomenological relation, 
but should be derivable from a microscopic theory, i.e., from a quantum 
theory of gravity. 

3. T H E  T H E R M A L  M E M B R A N E  

If (V=)  is thermal at the Hawking temperature Tn, then from (7) the 
membrane will satisfy the Nyquist relation, i.e., will behave as a resistor at 
TH and radiate thermally into its surroundings. The most difficult part of 
the problem to understand without recourse to quantum field theory is 
why the field at the horizon should be thermal. We can only supply a 
heuristic argument, but one that will raise an important problem. To 
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obtain a more rigorous derivation, we should look at the dynamical evolu- 
tion of the horizon, a matter to which we hope to return elsewhere. 

At late times a black hole formed from collapse is indistinguishable 
from an eternal hole. In the latter case an observer at rest on the stretched 
horizon at ro is locally equivalent to a constantly accelerated observer in 
Minkowski spacetime with acceleration equal to the surface gravity. Both 
observers should therefore see a thermal bath at the Hawking temperature. 

If this equivalence is valid, one can ask the question: why does the 
stretched horizon radiate, whereas a constantly accelerated conductor in 
Minkowski spacetime does not? The reason is related to the different 
potential barriers for the fields between the conductors and spatial infinity 
in the two cases. 

The external field can be shown to be derivable from an equation of 
the form 

~ + V(r,)~ =0 (9) 

(e.g., Chandrasekhar ~1~ and Futterman et al.~31). The asymptotic forms at r o 
near the hole ( r .  ~ - ~ )  and at spatial infinity are given by 

~ = e - i k r . +  Ae ikr. (10) 

=Be ikr. (11) 

Next we need a simple result for solutions of equations of the form (9). 
Write the equation as ( L +  V)~b=0. Then the scattered field asymptoti- 
cally, ~b =~b+ L-~Vb,  is propagated by the free field propagator, since 
L~, =0 .  In particular, since V ( r . ) ~  0 as r .  ~ +Go, the asymptotic fields 
(11) are propagated by the free Green function, which, near ro, is the 
flat-space one (in terms of r .) .  

Now, if G is a Green function for the external field equation (9), the 
field in the presence of the membrane with current density JH is of the 
symbolic form 

~b = ~bo + f GJHdA (12) 

The noise power as a result of the membrane will change by (compare 
Raine et al. 16~) 

(13) 
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where the Fourier  t ransforms of the currents are given by 

J ,o= Z,o(~,o (14) 

To  obtain the change in noise power we use the result of Masser  et al.t5~: 
omitt ing the Casimir  terms and using ~b c and ~R for the left- and right- 
moving components ,  respectively their Eq, (27) can be written as the 
Fourier  t ransform of 

Iz,ol E<~R(x) ~R(x')> + <~L(x) q~L(x')>] + ( i z ,  o - i z , * ) < q k t _ ( x )  ~bL(X') > 
(IS) 

Substituting for ~b L and ~bR from (1 1) near r o gives a thermal factor times 

Iz l  2 (1 + IAI  2) + i ( z  - Z * )  IAI  2 = IAI  2 [2 Izl  2 + i ( z  - z *  ) ]  + (1 - IAI  z) Iz l  2 

(16) 

The first term in square brackets on the right vanishes by the fluctuation 
dissipation theorem for the membrane;  the final term represents the emis- 
sion of energy by the membrane.  In fact since 1 - IA[ 2 = IBI 2, this is just a 
thermal spectrum modified by a transmission factor, as expected. 

For  an accelerated perfect conductor  in flat spacetime we have A = 1 
and no emission (compare  Raine et alJ 6} and Massar  et al. 151). 
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